lunes, 28 de febrero de 2011

5.18 LEY DE FARADAY (APLICACIONES)

La Ley de inducción electromagnética de Faraday (o simplemente Ley de Faraday) se basa en los experimentos que Michael Faraday realizó en 1831 y establece que el voltaje inducido en un circuito cerrado es directamente proporcional a la rapidez con que cambia en el tiempo el flujo magnético que atraviesa una superficie cualquiera con el circuito como borde:
\oint_C \vec{E} \cdot \vec{dl} = - \ { d \over dt }   \int_S   \vec{B} \cdot \vec{dA}
donde \vec{E} es el campo eléctrico, d\vec{l} es el elemento infinitesimal del contorno C, \vec{B} es la densidad de campo magnético y S es una superficie arbitraria, cuyo borde es C. Las direcciones del contorno C y de \vec{dA} están dadas por la regla de la mano derecha.
La permutación de la integral de superficie y la derivada temporal se puede hacer siempre y cuando la superficie de integración no cambie con el tiempo.
Por medio del teorema de Stokes puede obtenerse una forma diferencial de esta ley:
\nabla \times \vec{E} = -\frac{\partial \vec{B}} {\partial t}
Ésta es una de las ecuaciones de Maxwell, las cuales conforman las ecuaciones fundamentales del electromagnetismo. La ley de Faraday, junto con las otras leyes del electromagnetismo, fue incorporada en las ecuaciones de Maxwell, unificando así al electromagnetismo.
En el caso de un inductor con N vueltas de alambre, la fórmula anterior se transforma en:
Vε  =-N{d \Phi \over d t}
donde Vε es el voltaje inducido y dΦ/dt es la tasa de variación temporal del flujo magnético Φ. La dirección voltaje inducido(el signo negativo en la fórmula) se debe a la ley de Lenz.

Una aplicación industrial importante de la electrólisis es el horno eléctrico, que se utiliza para fabricar aluminio, magnesio y sodio. En este horno, se calienta una carga de sales metálicas hasta que se funde y se ioniza. A continuación, se obtiene el metal electrolíticamente. Los métodos electrolíticos se utilizan también para refinar el plomo, el estaño, el cobre, el oro y la plata. La ventaja de extraer o refinar metales por procesos electrolíticos es que el metal depositado es de gran pureza.

5.17 MOTORES (TRANSFORMACION DE ENERGIA ELECTRICA)

TRANSFORMACIONES DE LA ENERGÍA.
A finales del siglo XVII, Isaac Newton sentó las bases de un nuevo concepto de la física e ideó la noción de fuerza como una magnitud que provocaba los movimientos de los cuerpos. Sin embargo, sus herederos ideológicos sustituyeron las fuerzas por la energía a ellas asociadas como causas primigenias de los hechos físicos. Según estos principios , los intercambios de energía entre los distintos sistemas son responsables de estos fenómenos y se manifiestan en diversas formas convertibles entre sí.
Un sistema ideal que no sufriera pérdidas constituiría un movil perpetuo, ya que su energía generaría un trabajo permanente. En la realidad, tales sistemas no existen, y las pérdidas energéticas se traducen en emisión de calor. Por ello se dice que el calor es la forma más degradada de la energía y no es recuperable para el sistema; en consecuencia, no resulta transformable.
El siglo XX presenció el nacimiento de una nueva teoría que obligó a modificar sustancialmente el concepto de energía y de sus relaciones de intercambio entre los cuerpos. La relatividad física, defendida por Einstein, observa la energía y la masa como diversas manifestaciones de un propiedad única, con lo que altera el tradicional principio de conservación. Así, la energía puede pasar a otros estados e incluso convertirse en masa, y a la inversa. Einstein, afirmó que toda clase de energía tiene masa determinada, y demostró que masa y energía son equivalentes; la propiedad llamada masa es, simplemente, energía concentrada. En otras palabras, materia es energía y energía es materia.
PRINCIPALES FORMAS DE ENERGIA
  • Energía Mecánica.
Por ejemplo, aquella que poseen los cuerpos en movimiento, o bien la interacción gravitatoria entre la Tierra y la Luna.
  • Energía Electromagnética.
Generada por campos electrostáticos, campos magnéticos o bien por corrientes eléctricas.
  • Energía Química.
Se origina por las reacciones químicas entre las sustancias; proporciona capacidad para efectuar un trabajo, por ejemplo: la dinamita, una batería de automóvil, una pila para radio, etcétera.
  • Energía Metabólica.
Es la generada por los organismos vivos gracias a procesos químicos de oxidación como producto de los alimentos que ingieren.
  • Energía calórifica.
Es la que se transmite entre dos cuerpos que se encuentran a diferente temperatura. La proporciona el calor; por ejemplo, una parrilla eléctrica, el vapor para mover una locomotora, etcétera. El calor también tiene por efecto cambiar el estado de los cuerpos y, al aumentar su temperatura, los sólidos se vuelven líquidos (fusión) y los líquidos hierven (ebullición) y se evaporan. No hay que olvidar que la energía adopta sucesivamente varias formas antes de convertirse en calor, que es una forma degradada de energía.
  • Energía eléctrica.
Es la que se produce por el movimiento de electrones a través de un conductor. mueve máquinas, enciende lámparas, calentadores, motores, etcétera, es originada por un flujo de electrones a través de un conductor eléctrico. Se puede obtener energía eléctrica a través de cualquier otra forma de energía. Prácticamente se explota la energía hidráulica de saltos y ríos, o bien la energía térmica de la combustión de hidrocarburos; incluso la energía solar se aprovecha para suministrar electricidad a. ingenios espaciales. El único inconveniente que presenta la energía eléctrica es no tener un medio cómodo para almacenaría.
La energía cinética es la derivada del movimiento de las partículas materiales, mientras que la energía poseída por los cuerpos en virtud de sus posiciones o configuraciones se conoce como potencial. Un martillo, por ejemplo, utliza su energía cinética para vencer las fuerzas de rozamiento que se oponen a la penetración del clavo. Sin embargo, los saltos de agua transforman la diferencia de energía potencial, debida a las distintas alturas o distintas con respecto al centro de la Tierra, energía eléctrica.
Tradicionalmente, se diferencia la energía cinética de traslación, provocada por la velocidad lineal de un cuerpo, de la rotación de los sólidos en torno a un eje. Asimismo, la energía potencial puede ser de naturaleza gravitatoria, elástica, magnética, eléctrica, química, etc.
La comporación de todos estos tipos de energía se realiza a través del trabajo mecánico consumido en la producción de cada una de ellas. La física experimental ha demostrado que una cantidad dada de energía corresponde siempre al mismo trabajo, definido como su equivalente mecánico.

5.16 FUERZA DE LORENTZ

La fuerza de Lorentz es la fuerza ejercida por el campo electromagnético que recibe una partícula cargada o una corriente eléctrica.
Cuando una carga eléctrica en movimiento, se desplaza en una zona donde existe un campo magnético, además de los efectos regidos por la ley de Coulomb, se ve sometida a la acción de una fuerza.
Supongamos que una carga Q, que se desplaza a una velocidad v, en el interior de un campo magnético B. Este campo genera que aparezca una fuerza F, que actúa sobre la carga Q, de manera que podemos evaluar dicha fuerza por la expresión:

Como la fuerza es el resultado de un producto vectorial, será perpendicular a los factores, es decir, a la velocidad y al campo magnético. Al ser perpendicular a la velocidad de la carga, también lo es a su trayectoria, por lo cuál dicha fuerza no realiza trabajo sobre la carga, lo que supone que no hay cambio de energía cinética, o lo que es lo mismo, no cambia el módulo de la velocidad. La única acción que se origina, cuando la partícula entra en el campo magnético, es una variación de la dirección de la velocidad, manteniéndose constante el módulo.

Este cambio de dirección es debido a que la fuerza que aparece va a actuar como fuerza centrípeta, originando un movimiento de rotación de la partícula en el interior del campo magnético. En el gráfico que vemos al lado,  observamos la fuerza producida, que es la que originará ese cambio de dirección. B representa al campo, cuyo sentido es hacia el interior de la página. F es la fuerza, que, como vemos, tiene dirección radial, es decir, actúa como fuerza central y, v es la velocidad de la carga.

Recapitulacion 7

Recapitulación 7
Inducción electromagnética.
En el simulador, con una dos   y tres espiras del alambre magneto:
<!--[if !supportLists]-->-          <!--[endif]--> mover  el imán rápidamente hacia la derecha y observar  el voltaje máximo generado, (+ o_).
<!--[if !supportLists]-->-          <!--[endif]-->Repetir  en sentido hacia la izquierda y observar el voltaje máximo generado.
<!--[if !supportLists]-->-          <!--[endif]-->Tabular y graficar los datos obtenidos.

Equipo  Área de la espira
Una espira
Voltaje positivo-negativo
Dos espiras
Voltaje positivo-negativo
Tres espiras
Voltaje positivo-negativo
1          20 %
1 positiva
2 positivas
5 positivas
2          30%
5 positiva
15 positivas
20 positivas
3          40%
1 positiva
3 positivas
6 positivas
4          50%
1 positiva
1 positiva
4 positivas
5          60 %
1 positiva
3 positivas
4 positivas
6          70%
1 positiva
3 positivas
6 positivas


Imágenes



SEMANA 7 JUEVES

Semana 7 jueves

5.13 Interacción electromagnética

Electroimán

Material: Pila, alambre magneto No 22, clavo. Limadura de hierro.
Procedimiento:
<!--[if !supportLists]-->-       <!--[endif]-->Colocar en una hoja de papel, una muestra de la limadura de hierro,
<!--[if !supportLists]-->-       <!--[endif]-->1.- Acercar  a la limadura de hierro el clavo y anotar los cambios.
<!--[if !supportLists]-->-       <!--[endif]-->2.- Acercar el alambre magneto a la limadura de hierro y observar los cambios.
<!--[if !supportLists]-->-       <!--[endif]-->3.- Acercar la pila a la limadura de hierro y observar los cambios.
<!--[if !supportLists]-->-       <!--[endif]-->4.- Enrrollar el alambre magneto al clavo y acercar a la limadura de hierro y anotar los cambios.
<!--[if !supportLists]-->-       <!--[endif]-->5.- Conectar a la pila el alambre arrollado al clavo y acercar a la limadura de hierro anotar los cambios.
Observaciones:
Pasos
Cambios observados
1
Si hubo atracción
2
No hubo
3
No hubo
4
No hubo
5
Si hubo

Semana 7 martes

Semana 7 martes

Equipo
5.13 Interacción electromagnética.
5.14 Interacción electromagnética  entre conductores  rectilíneos.
5.15 Atracción o repulsión entre conductores con corriente.
1
La interacción electromagnética es la interacción que ocurre entre las partículas con carga eléctrica. Desde un punto de vista macroscópico y fijado un observador, suele separarse en dos tipos de interacción, la interacción electrostática, que actúa sobre cuerpos cargados en reposo respecto al observador, y la interacción magnética, que actúa solamente sobre cargas en movimiento respecto al observador.
Las partículas fundamentales interactúan electromagnéticamente mediante el intercambio de fotones entre partículas cargadas. La electrodinámica cuántica proporciona la descripción cuántica de esta interacción, que puede ser unificada con la interacción nuclear débil según el modelo electrodébil.
Un conductor rectilíneo está recorrido por una corriente eléctrica. En las proximidades del conductor se sitúa una aguja imantada paralela al conductor. Al pasar la corriente la aguja gira hasta ponerse perpendicular al conductor. Al cesar la corriente, la aguja vuelve a su posición inicial. El paso de la corriente eléctrica ejerce sobre la aguja imantada los mismos efectos de un imán.Las corrientes eléctricas producen campos magnéticos.

Cada uno de los conductores  tendrá su campo magnético y la interacción entre ambos hará que aparezcan fuerzas de atracción o repulsión dependiendo del sentido en el que circulen las corrientes. Si la corriente circula en sentido contrario los conductores se repelen, por el contrario si circula en el mismo sentido se atraerían
2
Es menos poderosa que la interacción fuerte y tiene su origen en la carga eléctrica. Debido a que los átomos están formados por cargas eléctricas y a que la materia esta constituida por átomos; el estudio de la materia, la radiación y sus interacciones, se hace utilizando la interacción electromagnética
cuando por un conductor circula una corriente eléctrica, ésta creará un campo
magnético en el exterior, mientras que el campo eléctrico en el exterior será prácticamente nulo al ser
el conductor eléctricamente neutro -tiene tantas cargas positivas (protones) como negativas
(electrones).
Si en lugar de una única carga se tiene una corriente eléctrica rectilínea de
intensidad I (I=dq/dt) y de longitud L, la expresión de la fuerza sobre ella será
(ley de Ampère para una corriente rectilínea)
En electricidad la atraccion existe cuando las cargas electricas tienen signos o polaridad contraria por ejemplo una carga negativa y otra positiva.
La repulcion existe cuando las cargas tienen el mismo signo o polaridad,por ejemplo dos cargas negativas se repelen, dos cargas positivas igualmente se repelen y la atraccion sera con la misma fuerza y magnitud de la intensidad de su campo electrico.

3
La interacción electromagnética es la interacción que ocurre entre las partículas con carga eléctrica. Desde un punto de vista microscópico y fijado un observador, suele separarse en dos tipos de interacción, la interacción electrostática, que actúa sobre cuerpos cargados en reposo respecto al observador, y la interacción magnética, que actúa solamente sobre cargas en movimiento respecto al observador.

Una carga en movimiento en presencia de un imán experimenta una fuerza magnética Fm que desvía su trayectoria. Dado que la corriente eléctrica supone un movimiento continuado de cargas, un conductor por donde circula corriente sufrirá, por la acción de un campo magnético, el efecto conjunto de las fuerzas magnéticas que se ejercen sobre las diferentes cargas móviles de su interior.
Si la corriente es rectilínea y de longitud l, la expresión de la fuerza magnética toma la forma:
Fm = I · B · L · sen <!--[if !vml]-->Campos magnéticos<!--[endif]-->
(11.6)
en donde I es la intensidad de corriente, B la intensidad de campo y <!--[if !vml]-->Campos magnéticos<!--[endif]-->
el ángulo que forma la corriente con el vector campo.

Un conductor es un hilo o alambre por el cual circula una corriente eléctrica. Una corriente eléctrica es un conjunto de cargas eléctricas en movimiento. Ya que un campo magnético ejerce una fuerza lateral sobre una carga en movimiento, es de esperar que la resultante de las fuerza sobre cada carga resulte en una fuerza lateral sobre un alambre por el que circula una corriente eléctrica.


La experimentación con conductores dispuestos paralelamente pone de manifiesto que éstos se atraen cuando las corrientes respectivas tienen el mismo sentido y se repelen cuando sus sentidos de circulación son opuestos. Además, esta fuerza magnética entre corrientes paralelas es directamente proporcional a la longitud del conductor y al producto de las intensidades de corriente e inversamente proporcional a la distancia r que las separa, dependiendo además de las características del medio.

4
La interacción electromágnetica es aquella que ocurre entre las partículas con carga eléctrica. Macroscópicamente, suele separarse en dos tipos de interacciones:
La interacción eléctrica se pone de manifiesto en todas las situaciones donde exista carga, mientras que la interacción magnética sólo se expresa cuando éstas cargas están en movimiento relativo respecto al observador.

Una carga en movimiento en presencia de un imán experimenta una fuerza magnética Fm que desvía su trayectoria. Dado que la corriente eléctrica supone un movimiento continuado de cargas, un conductor por donde circula corriente sufrirá, por la acción de un campo magnético, el efecto conjunto de las fuerzas magnéticas que se ejercen sobre las diferentes cargas móviles de su interior. Si la corriente es rectilínea y de longitud l,la expresión de la fuerza magnética toma la forma:
Fm = I.B.L.sen φ
(11.6)
La carga eléctrica es de naturaleza discreta, fenómeno demostrado experimentalmente por Robert Millikan. Por razones históricas, a los electrones se les asignó carga negativa: –1, también expresada –e. Los protones tienen carga positiva: +1 o +e. A los quarks se les asigna carga fraccionaria: ±1/3 o ±2/3, aunque no se han podido observar libres en la naturaleza.[1]
5
Una carga eléctrica  crea un campo eléctrico y una carga eléctrica en movimiento crea un campo magnético;  y la corriente eléctrica  crea lo que se denomina un campo electromagnético.

 El electromagnetismo es la rama de la física que se encarga del estudio de las relaciones existentes entre las corrientes eléctricas y los fenómenos magnéticos.

Conductores: son materiales que permiten el paso de electricidad (cargas) a trav ́es de ellos. Se caracterizan porque contienen cargas que pueden moverse libremente en el material (cargas libres).
La experimentación con conductores dispuestos paralelamente pone de manifiesto que éstos se atraen cuando las corrientes respectivas tienen el mismo sentido y se repelen cuando sus sentidos de circulación son opuestos. Además, esta fuerza magnética entre corrientes paralelas es directamente proporcional a la longitud del conductor y al producto de las intensidades de corriente e inversamente proporcional a la distancia r que las separa, dependiendo además de las características del medio.

6
La interacción electromagnética es la interacción que ocurre entre las partículas con carga eléctrica. Desde un punto de vista macroscópico y fijado un observador, suele separarse en dos tipos de interacción, la interacción electrostática, que actúa sobre cuerpos cargados en reposo respecto al observador, y la interacción magnética, que actúa solamente sobre cargas en movimiento respecto al observador.



Los fenómenos magnéticos no solo se producen en los imanes naturales, las cargas eléctricas en movimiento también originan a su alrededor un campo magnético, es decir, se comportan como un imán. La corriente eléctrica es un conjunto de cargas en movimiento y por lo tanto será capaz de producir estos fenómenos, en este hecho se basa la construcción de los electroimanes .





Interacción electromagnética  sobre una varilla.
Cada equipo determinara la velocidad de la varilla al cambiar el campo magnético. http://www.sc.ehu.es/sbweb/fisica/elecmagnet/campo_magnetico/varilla/varilla.htm

Graficar Campo magnético, velocidad de la varilla.
Equipo
Campo magnético en Gauss
Velocidad de la varilla m/seg.
1
50
5.8 (m/s)
2
100
8.1 (m/s)
3
200
11.6 (m/s)
4
300
14.1 (m/s)
5
400
16.3 (m/s)
6
500
19.8(m/s)